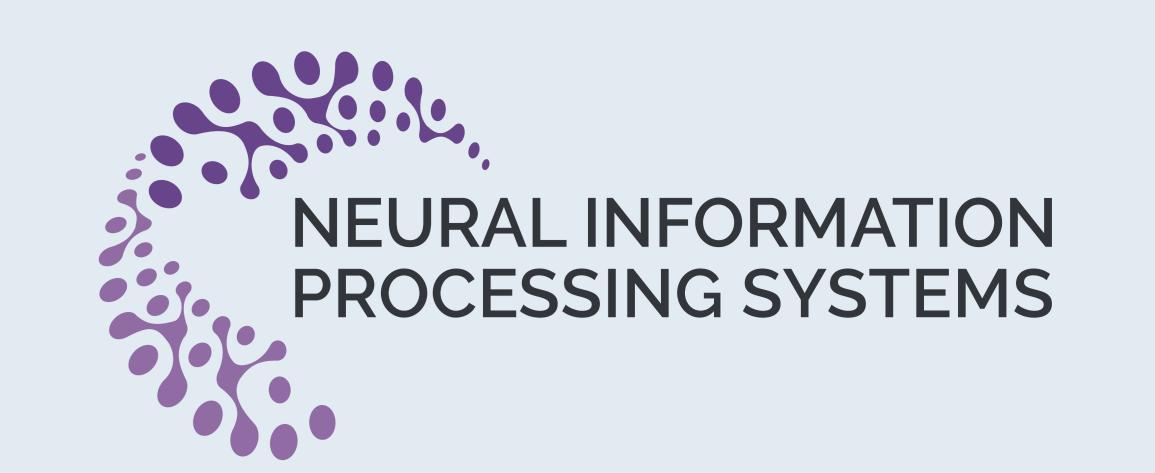
Fantastic Features and Where to Find Them:

SAM



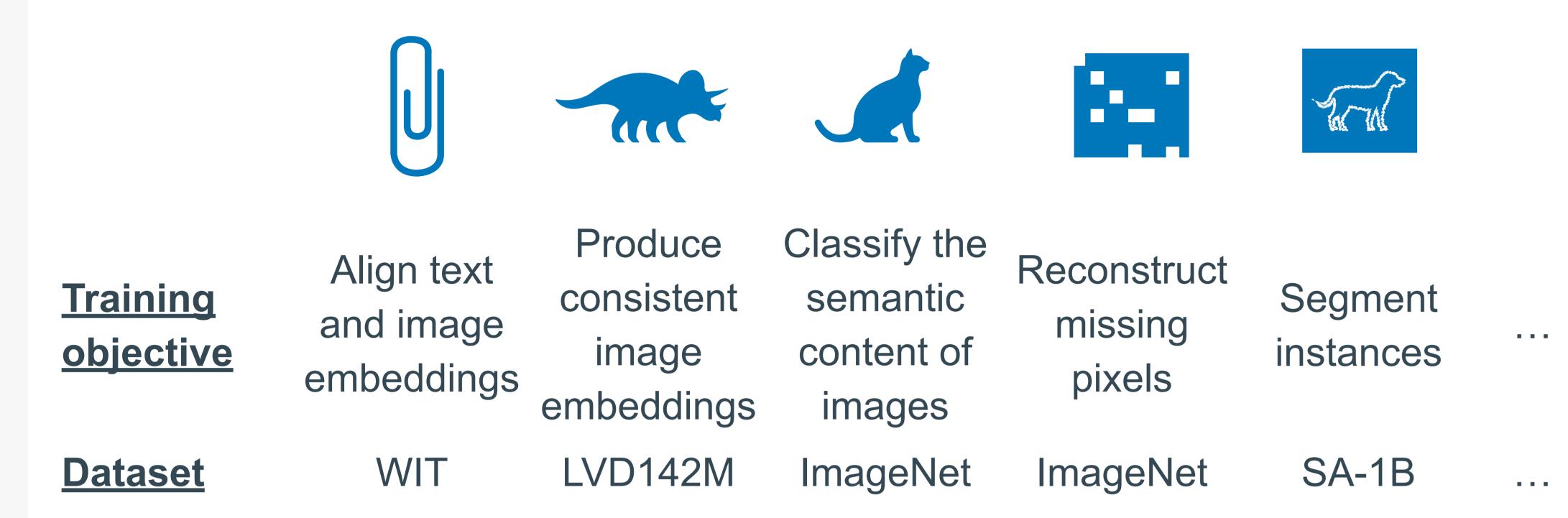
A Probing Method to combine Features from Multiple Foundation Models

Benjamin Ramtoula, Pierre-Yves Lajoie, Paul Newman, Daniele De Martini

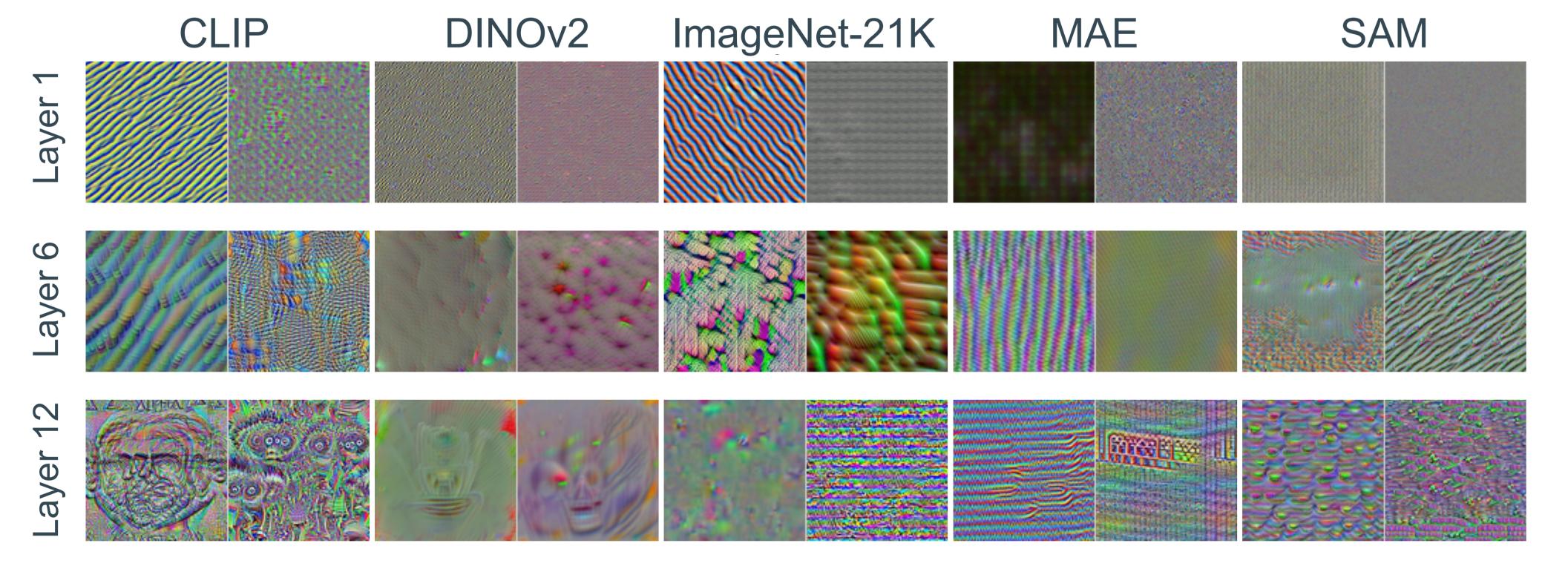
Different foundation models learn different representations

<u>Model</u>

We now have access to different pre-trained models

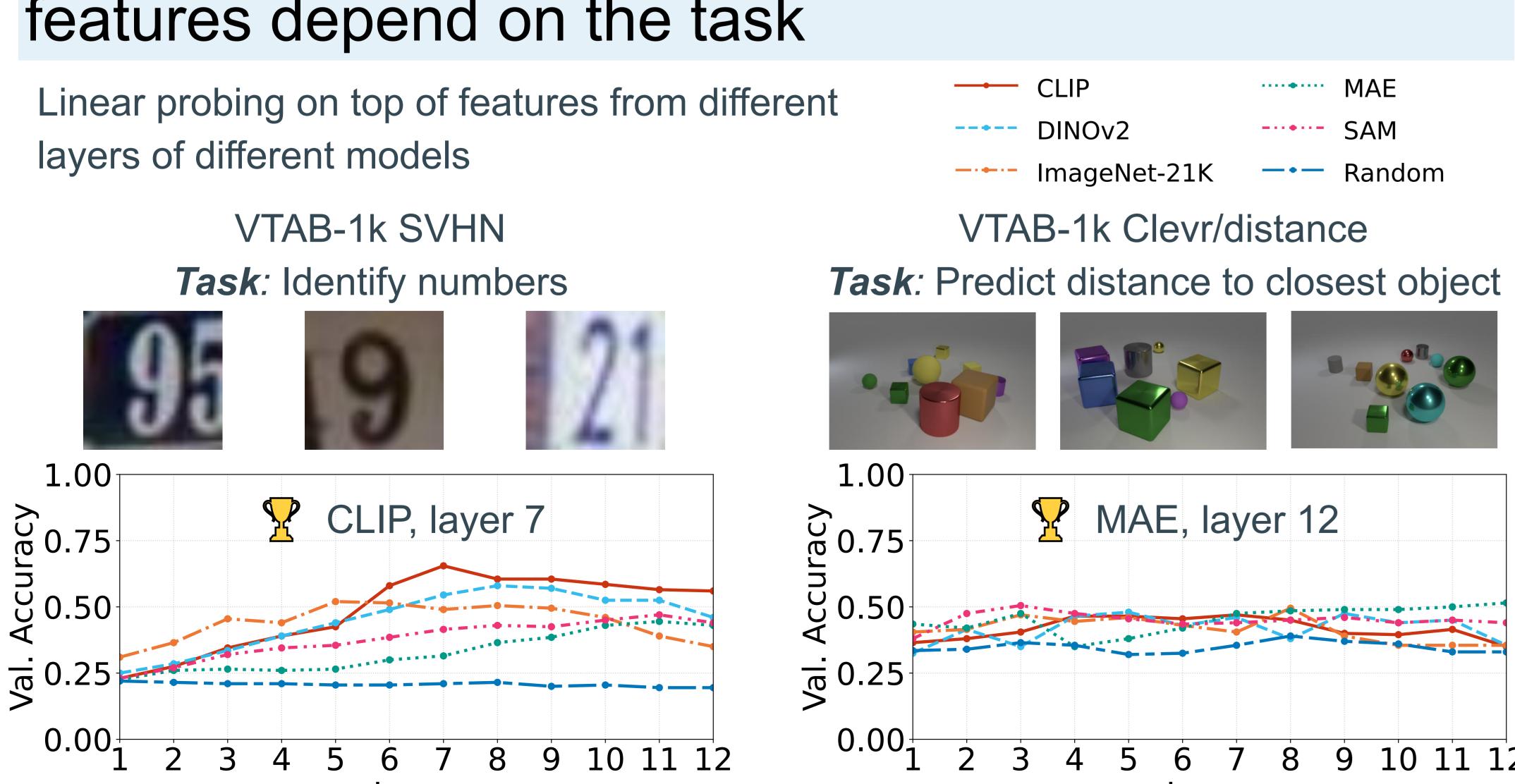


Supervision and data differences affect the representations learned throughout their layers

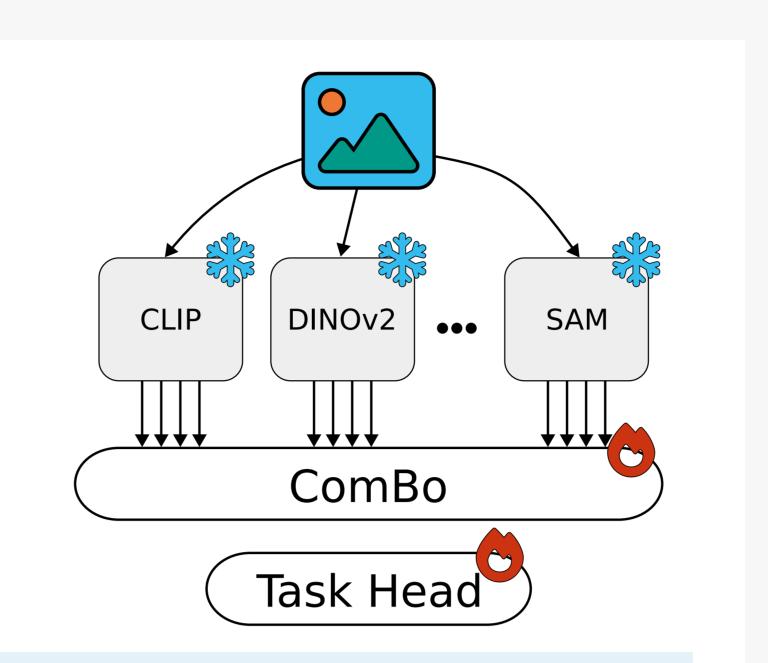


Images that maximise activations of different neurons

The model and layer producing the most relevant features depend on the task



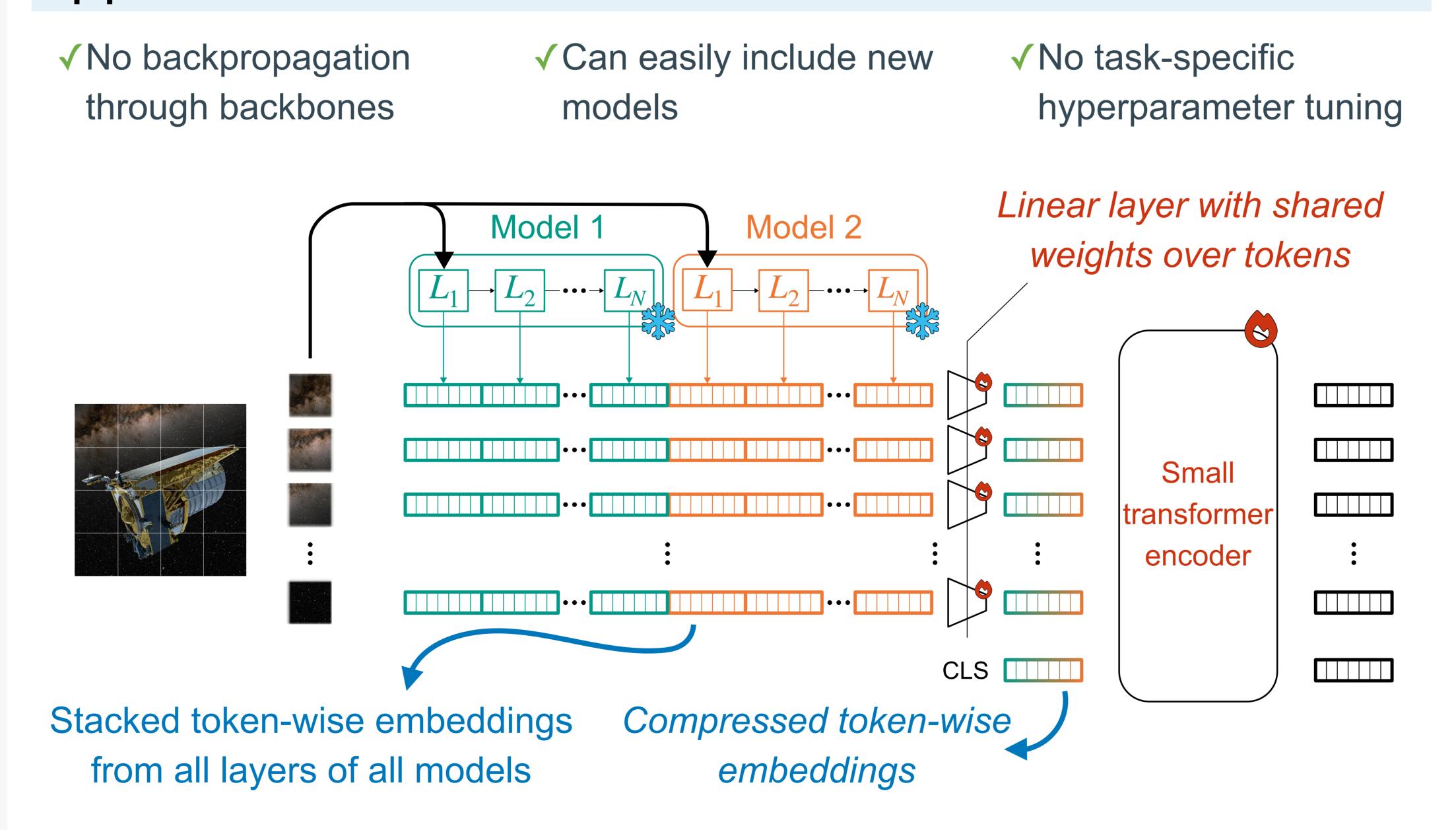
We propose an architecture for efficient multi-layer, multi-model feature probing



Existing solutions have limitations

Existing ways to adapt pre-trained models	Examples	Scales to multiple backbones?	Can easily use new backbones?	Can easily be adapted to a new task?
Fine-tuning-based approaches	LoRA, Adapter+			
Multi-layer probing of frozen features	Head2Toe, SMP			
Distillation + adaptation	RADIOv2.5 + Adapter+			

We address them with **ComBo**, our probing approach to **Com**bine back**Bo**nes



We can also use ComBo to identify and keep only the most task-relevant models

Using the norm of learned linear layer weights associated DFN CLIP with each model to measure their importance:

DINOv2

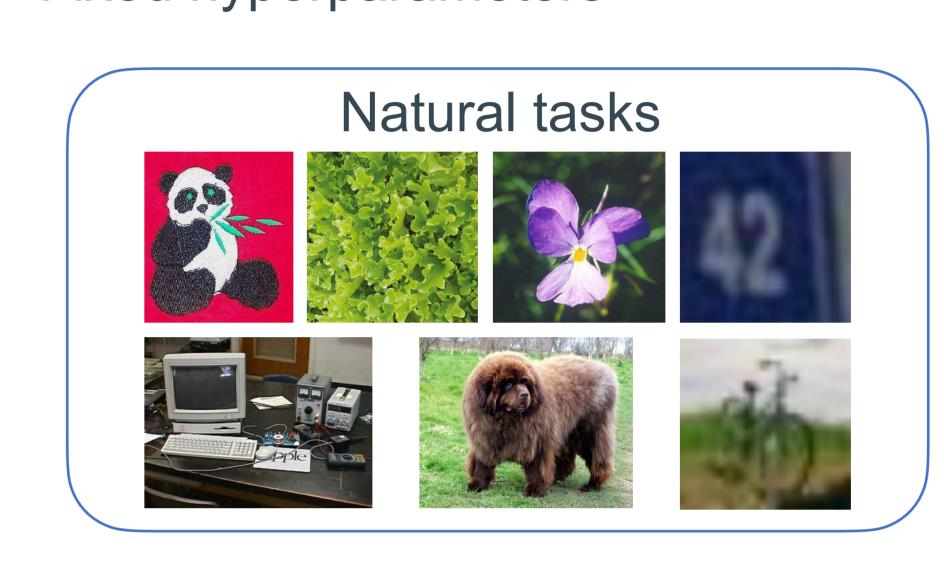
- Train ComBo while minimising each model's importance
 Inspect weights to measure task-relevance
- 3. Retrain using only the most relevant backbones

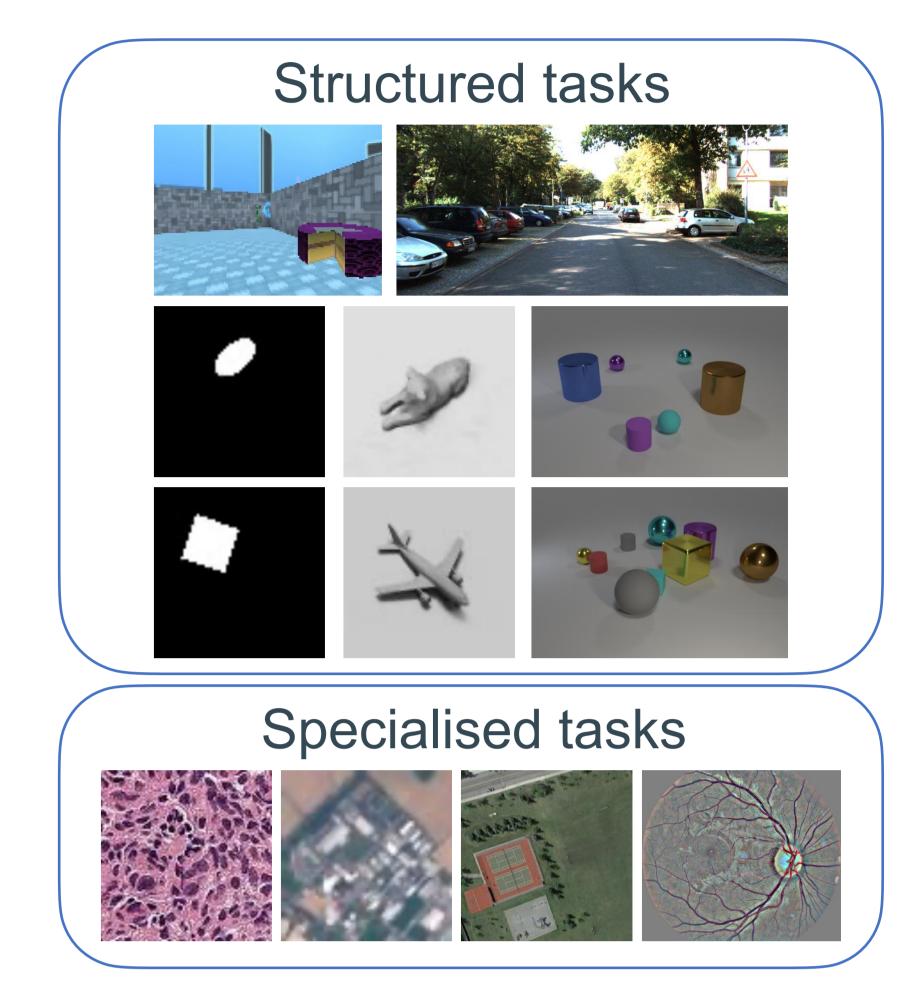
SigLIP VTAB-1k tasks

Why is this useful?

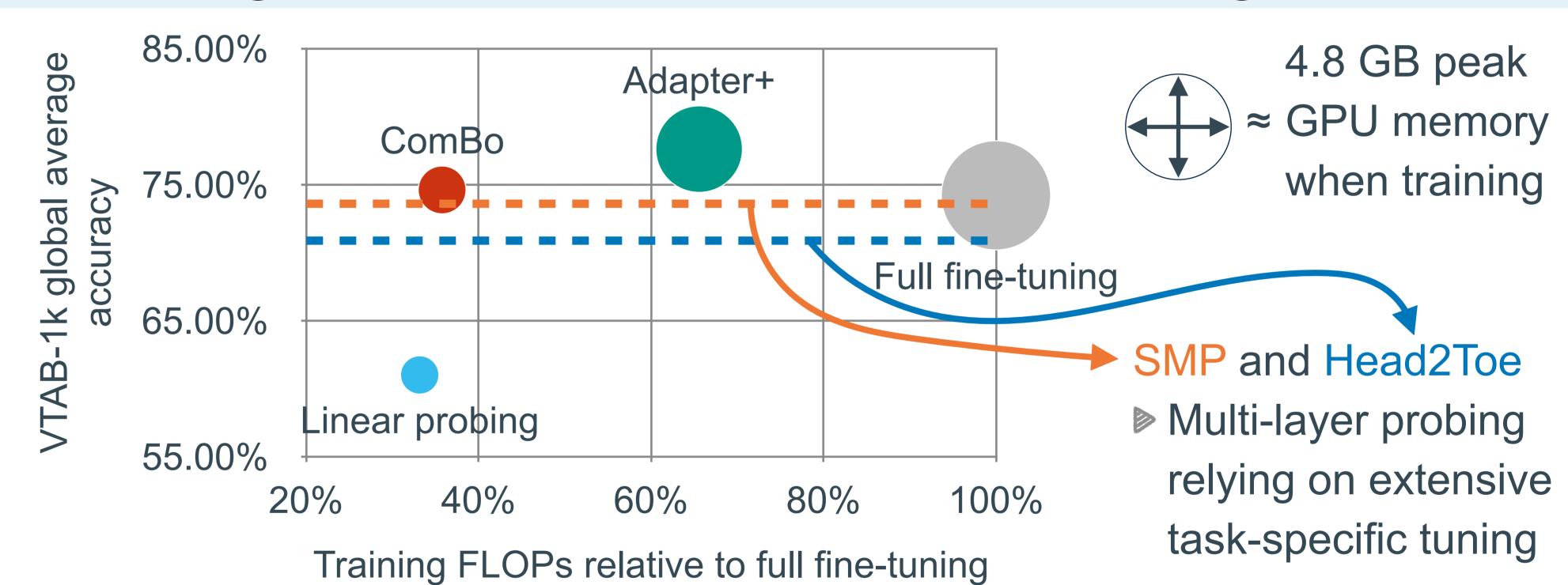
Experimental setting

- VTAB-1k benchmark:
- 19 tasks framed as classification
- Only 1000 training images per task
- Fixed hyperparameters



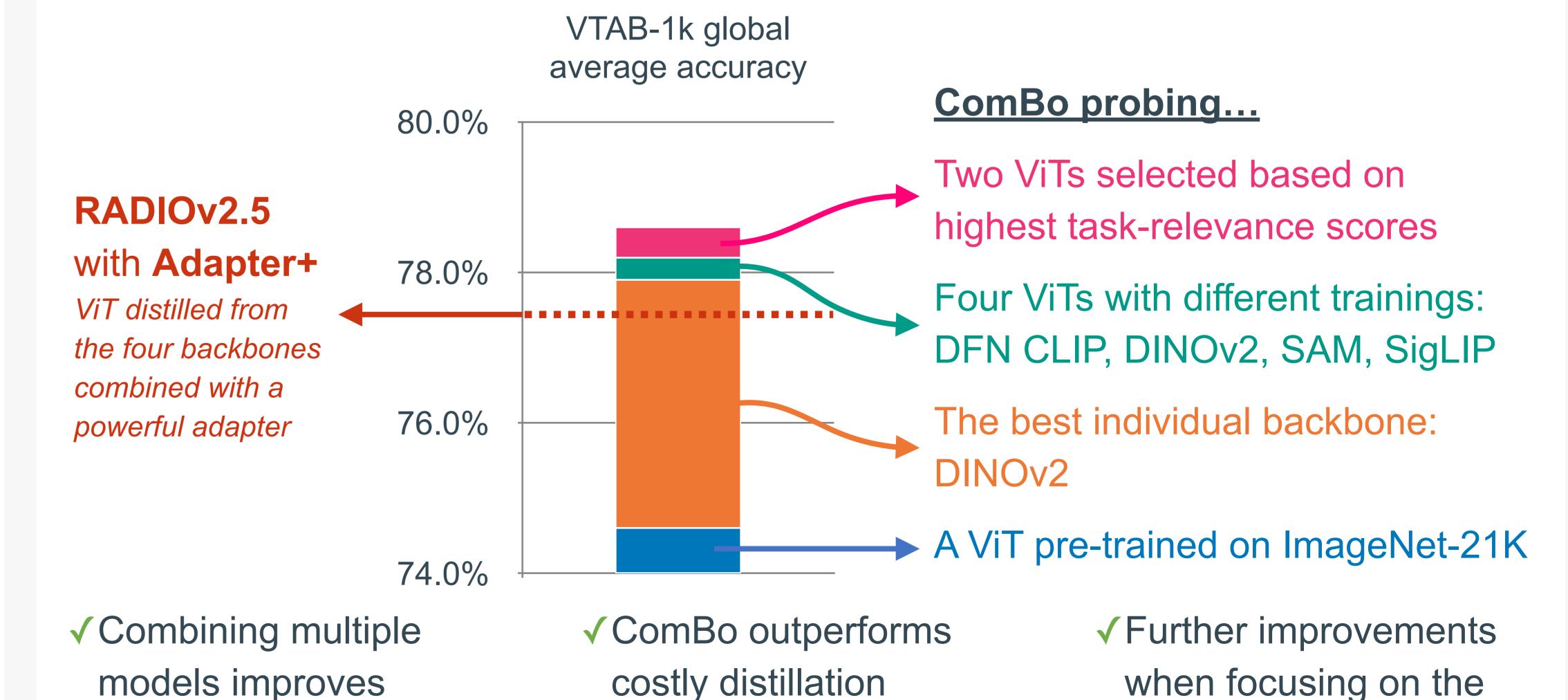


Adapting a ViT-B/16 pre-trained on ImageNet-21K



✓ Good performance and minimal compute (5min to train on an RTX 3090 Ti GPU)
 ► Enables scaling to multiple backbones

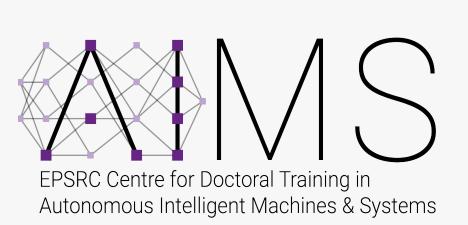
Probing multiple foundation models at once



This work was supported by EPSRC Programme Grant "From Sensing to Collaboration" (EP/V000748/1), the EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines and Systems (EP/S024050/1), Oxa, and the Digital Research Alliance of Canada.

performance

Engineering and Physical Sciences Research Council



most relevant models